Copied to
clipboard

?

G = C22.33C25order 128 = 27

14th central stem extension by C22 of C25

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C22.33C25, C24.611C23, C23.114C24, C42.539C23, C42(C4⋊Q8), C42C22≀C2, (C4×D4)⋊92C22, C42(C41D4), C42(C4⋊D4), (C2×C4).36C24, C4⋊Q8107C22, (C4×Q8)⋊86C22, C42(C22⋊Q8), C41D458C22, C4⋊C4.460C23, (C22×C42)⋊25C2, (C2×C42)⋊43C22, C42(C4.4D4), C42(C42.C2), C42(C422C2), (C2×D4).446C23, C4.4D497C22, C22⋊C4.74C23, (C2×Q8).420C23, C42.C274C22, C42(C22.19C24), C422C252C22, C42⋊C285C22, C22.19C2445C2, C22≀C2.34C22, C4⋊D4.240C22, (C23×C4).708C22, C42(C22.D4), C22⋊Q8.240C22, C42(C22.26C24), C22.26C2458C2, (C22×C4).1297C23, C42(C22.19C24), C42(C23.37C23), C42(C23.36C23), C23.36C2366C2, C23.37C2359C2, C42(C22.26C24), C22.D4.41C22, C42(C23.37C23), C42(C23.36C23), (C4×C4○D4)⋊16C2, C4.71(C2×C4○D4), (C2×C4)⋊15(C4○D4), C22.7(C2×C4○D4), C2.15(C22×C4○D4), (C2×C4○D4).320C22, SmallGroup(128,2176)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C22.33C25
C1C2C22C2×C4C42C2×C42C22×C42 — C22.33C25
C1C22 — C22.33C25
C1C42 — C22.33C25
C1C22 — C22.33C25

Subgroups: 812 in 606 conjugacy classes, 408 normal (8 characteristic)
C1, C2 [×3], C2 [×10], C4 [×12], C4 [×18], C22, C22 [×6], C22 [×26], C2×C4 [×36], C2×C4 [×54], D4 [×36], Q8 [×12], C23 [×7], C23 [×6], C42 [×2], C42 [×26], C22⋊C4 [×36], C4⋊C4 [×36], C22×C4 [×30], C22×C4 [×12], C2×D4 [×18], C2×Q8 [×6], C4○D4 [×24], C24, C2×C42 [×16], C42⋊C2 [×18], C4×D4 [×36], C4×Q8 [×12], C22≀C2 [×4], C4⋊D4 [×12], C22⋊Q8 [×12], C22.D4 [×12], C4.4D4 [×6], C42.C2 [×6], C422C2 [×8], C41D4, C4⋊Q8 [×3], C23×C4 [×3], C2×C4○D4 [×6], C22×C42, C4×C4○D4 [×6], C22.19C24 [×6], C23.36C23 [×12], C22.26C24 [×3], C23.37C23 [×3], C22.33C25

Quotients:
C1, C2 [×31], C22 [×155], C23 [×155], C4○D4 [×12], C24 [×31], C2×C4○D4 [×18], C25, C22×C4○D4 [×3], C22.33C25

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=1, f2=b, g2=a, ab=ba, dcd=ac=ca, ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, cg=gc, de=ed, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >

Smallest permutation representation
On 32 points
Generators in S32
(1 15)(2 16)(3 13)(4 14)(5 18)(6 19)(7 20)(8 17)(9 22)(10 23)(11 24)(12 21)(25 31)(26 32)(27 29)(28 30)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 25)(2 26)(3 27)(4 28)(5 21)(6 22)(7 23)(8 24)(9 19)(10 20)(11 17)(12 18)(13 29)(14 30)(15 31)(16 32)
(1 3)(2 4)(5 7)(6 8)(9 24)(10 21)(11 22)(12 23)(13 15)(14 16)(17 19)(18 20)(25 29)(26 30)(27 31)(28 32)
(1 15)(2 16)(3 13)(4 14)(5 18)(6 19)(7 20)(8 17)(9 24)(10 21)(11 22)(12 23)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19 15 6)(2 20 16 7)(3 17 13 8)(4 18 14 5)(9 31 22 25)(10 32 23 26)(11 29 24 27)(12 30 21 28)

G:=sub<Sym(32)| (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,22)(10,23)(11,24)(12,21)(25,31)(26,32)(27,29)(28,30), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,25)(2,26)(3,27)(4,28)(5,21)(6,22)(7,23)(8,24)(9,19)(10,20)(11,17)(12,18)(13,29)(14,30)(15,31)(16,32), (1,3)(2,4)(5,7)(6,8)(9,24)(10,21)(11,22)(12,23)(13,15)(14,16)(17,19)(18,20)(25,29)(26,30)(27,31)(28,32), (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,24)(10,21)(11,22)(12,23)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,15,6)(2,20,16,7)(3,17,13,8)(4,18,14,5)(9,31,22,25)(10,32,23,26)(11,29,24,27)(12,30,21,28)>;

G:=Group( (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,22)(10,23)(11,24)(12,21)(25,31)(26,32)(27,29)(28,30), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,25)(2,26)(3,27)(4,28)(5,21)(6,22)(7,23)(8,24)(9,19)(10,20)(11,17)(12,18)(13,29)(14,30)(15,31)(16,32), (1,3)(2,4)(5,7)(6,8)(9,24)(10,21)(11,22)(12,23)(13,15)(14,16)(17,19)(18,20)(25,29)(26,30)(27,31)(28,32), (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,24)(10,21)(11,22)(12,23)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,15,6)(2,20,16,7)(3,17,13,8)(4,18,14,5)(9,31,22,25)(10,32,23,26)(11,29,24,27)(12,30,21,28) );

G=PermutationGroup([(1,15),(2,16),(3,13),(4,14),(5,18),(6,19),(7,20),(8,17),(9,22),(10,23),(11,24),(12,21),(25,31),(26,32),(27,29),(28,30)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,25),(2,26),(3,27),(4,28),(5,21),(6,22),(7,23),(8,24),(9,19),(10,20),(11,17),(12,18),(13,29),(14,30),(15,31),(16,32)], [(1,3),(2,4),(5,7),(6,8),(9,24),(10,21),(11,22),(12,23),(13,15),(14,16),(17,19),(18,20),(25,29),(26,30),(27,31),(28,32)], [(1,15),(2,16),(3,13),(4,14),(5,18),(6,19),(7,20),(8,17),(9,24),(10,21),(11,22),(12,23),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19,15,6),(2,20,16,7),(3,17,13,8),(4,18,14,5),(9,31,22,25),(10,32,23,26),(11,29,24,27),(12,30,21,28)])

Matrix representation G ⊆ GL4(𝔽5) generated by

1000
0100
0040
0004
,
4000
0400
0010
0001
,
0100
1000
0001
0010
,
4000
0400
0010
0004
,
1000
0400
0040
0004
,
2000
0200
0010
0001
,
4000
0400
0020
0002
G:=sub<GL(4,GF(5))| [1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,4],[1,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,2,0,0,0,0,2] >;

56 conjugacy classes

class 1 2A2B2C2D···2I2J2K2L2M4A···4L4M···4AD4AE···4AP
order12222···222224···44···44···4
size11112···244441···12···24···4

56 irreducible representations

dim11111112
type+++++++
imageC1C2C2C2C2C2C2C4○D4
kernelC22.33C25C22×C42C4×C4○D4C22.19C24C23.36C23C22.26C24C23.37C23C2×C4
# reps1166123324

In GAP, Magma, Sage, TeX

C_2^2._{33}C_2^5
% in TeX

G:=Group("C2^2.33C2^5");
// GroupNames label

G:=SmallGroup(128,2176);
// by ID

G=gap.SmallGroup(128,2176);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,248,102]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=1,f^2=b,g^2=a,a*b=b*a,d*c*d=a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽